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the end-point energy of 5.3±0.8 MeV and a possible 
component with 2 MeV higher end point, the latter had 
much lower intensity and was discarded because of the 
danger of the summing of the coincident gamma rays 
to the main beta component. The subtraction of the 
higher energy component did not change the end-point 
energy of the 5.3-MeV component, therefore the value 
is believed to be free from gamma contribution. 

The coincidence gamma spectrum taken with the 
beta crystal biased integrally at 1.3 MeV, established 
the feeding of the 0.99- and 1.13-MeV gammas by 
strong beta rays. This experiment shows that the new 
nuclide is beta active, with the beta-decay energy more 
than 3 MeV. 

The gamma-gamma coincidences were studied with 
sum-peak spectrometry. A double sum-peak was ob­
served at 2.19dz0.03 MeV, clearly showing the coin­
cidence of the 1.13- and 0.99-MeV gammas. The energy 
difference between the sum peak and the arithmetic sum 
of the gamma-ray energies is in agreement with the 
nonlinearity of Nal(Tl) detectors.4 On the basis of the 
absence of a sum peak with an energy of ~2.3 MeV, 
it is concluded that more than 70% of the 1.13-MeV 
peak is due to a single gamma, therefore, the multiplicity 
of the first excitation energy observed in the decay of 
the other high-spin In isomers, is less than 30% of the 
1.13-MeV peak in the decay of In124. The possible 

4 J. Kantele and R. W. Fink, Nucl. Instr. Methods 13, 141 
(1961). 

I. INTRODUCTION 

THE nuclear shell model has met with considerable 
success in describing the properties of nuclei 

which are close in the periodic table to closed-shell 
nuclei. An extensive theory, initiated by the work of 
Racah, has been developed for the purpose of classifying 
and computing nuclear states in the shell model. De­
spite the generality of these methods, calculations for 
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coincidence of 3.21-MeV gamma between 0.99- and 
1.13-MeV gammas was not conclusively established 
partly because of the strongly interfering gammas 
from N16, and partly because of the large escape prob­
ability of one or both annihilation quanta from the 
3.21-MeV gamma. This produces secondary sum peaks 
which remain poorly resolved. 

Theobserved feeding of 2.12-MeV level by strong beta 
rays rules out all other reaction products of Sn124 

except In124 (n,p) and Cdm (n,a). Yamada and Matu-
moto5 predict the beta disintegration energy of 7.4 
MeV for In124 and 4.6 MeV for Cd121. If the 5.3-MeV 
beta component would feed the level at 2.12 MeV, the 
total beta-disintegration energy would coincide with 
the predicted value for In124. This feeding, although 
likely, could not be conclusively shown. Therefore, the 
assignment of the 3.6-sec activity to In124 is based on 
the energy fit between the observed gamma-ray energy 
of 1.13 MeV and the known first excitation energy of 
Sn124. Furthermore, there are pronounced similarities 
in the decay of the odd-odd indium isomers.1 The same 
systematic features are evident also in the decay of the 
3.6-sec activity. 

I wish to express my thanks to Professor A. Fry and 
Professor P. K. Kuroda for valuable support and I am 
also indebted to the accelerator team for technical 
assistance. 

6 M. Yamada and Z. Matumoto, J. Phys. Soc. Japan, 16, 1497 
(1961). 

systems of more than three nucleons have rarely been 
attempted, particularly in the full intermediate coupling 
scheme. The reason for this is that it is necessary to 
compute and diagonalize very large matrices since the 
number of possible configurations increases rapidly with 
increasing particle number. 

In view of the increasing importance of large scale 
automatic computation it is desirable to develop tech­
niques which are readily adaptable to machine calcula­
tion even though they may be less efficient. It is the 
purpose of this paper to describe one such method and 
its application to the positive-parity states of the Ne20 

nucleus. 
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The nuclear shell model has been applied to calculate the positive-parity energy levels of Ne20. The 
problem of four interacting particles in the 2s-ld shell has been solved for low-lying states using a technique 
which is particularly suited to automatic computation. The resulting energy levels are in quite good agree­
ment with the experimental results for a reasonable internucleon potential. 
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II. METHOD OF CALCULATION 

The conventional intermediate coupling method1 is 
to exploit the fact that the angular momentum com­
mutes with the Hamiltonian to reduce the vector space 
of the system. The calculation of the Hamiltonian 
matrix elements between angular momentum eigen­
vectors is rather involved, however, requiring extensive 
use of recoupling coefficients. 

The model assumed for the Ne20 nucleus is two protons 
and two neutrons in the 2s— Id shell outside an O16 core. 
There is a large number of possible configurations; 
Table I shows Nj and NM, the number of states of 
particular P and JZ) respectively. It is seen that the 
conventional method would require computing and 
diagonalizing matrices of dimension greater than 100. 

The method to be described uses a standard tech­
nique for finding the eigenvalues and eigenvectors of a 
Hermitian matrix H of dimension N. The method is to 
commence with an arbitrary vector u0 and to multiply 
it repeatedly by H. It is convenient to normalize the 
result at each stage, defining the sequence 

Un+l = Hxin/\Hun\ . 

The eigenvectors and eigenvalues of H will be denoted 
by \{ and X* and we will suppose that |Xi| > |X2| > • • • 
> |Xn|. If Uo is expressed as XXv* one can see that 

un=i:aA^/CE^Vn]1/2. 
It is evident from this that 

limu»=Vi. 
n—*oo 

Convergence to the ground state can be ensured by sub­
tracting some sufficiently large constant from the 
matrix. If Vi, v2,- • -,vr have been found, vr+i is deter­
mined by considering vectors orthogonal to those 
already found. Although this method is less favored 
than the Jacobi method for complete diagonalization, 
it may be more suitable to the shell model since only a 
few low-lying states can be considered physically sig­
nificant. This method has been discussed in detail by 
Wilkinson.2 

The calculation is carried out in the representation 
in which the j2 and jz of each particle are diagonal and 
protons and neutrons are regarded as distinguishable; 
that is, the states are products of two Slater deter­
minants. To compute the eigenvectors of a particular 
spin, say 7(7+1), we consider all those states whose 
total Jz is J. The vector space is now unnecessarily 
large. On the other hand, the matrix H can transform 
a given state into only a limited number of other states 
(perhaps TO the total number) since if the interaction is 
a two-particle operator it can change the state of only 
two particles at a time. 

*A. de-Shalit and I. Talmi, Nuclear Shell Theory (Academic 
Press, Inc., New York, 1963), pp. 261-282. 

2 J. H. Wilkinson, Proc. Cambridge Phil. Soc. 50, 536 (1954). 

TABLE I. Number of states of particular /2, (Nj) 
and particular Jg, (NM)' 

JOTM 0 

Nj 46 
NM 640 

1 

97 
594 

2 

143 
497 

3 

129 
354 

4 

109 
225 

5 

64 
116 

6 

36 
52 

7 

12 
16 

8 

4 
4 

The matrix multiplication is carried out by consider­
ing successively each state, choosing a pair of particles, 
p-p, n-n, or p-ny in each of the six possible ways, deter­
mining the new states which may be obtained by 
changing the quantum numbers of the pair and whether 
the new state is allowed by the exclusion principle, and 
then finding the matrix element connecting the initial 
and final states. The conservation of Js in the two-
particle matrix elements reduces the number of possible 
transitions considerably. If a p-p or n-n pair is picked 
the exchange term is included in the matrix element. 
If a p-n pair is picked the quantum numbers of the 
final state may be a permutation of the standard order­
ing. It is necessary to include a factor of ( ± 1) depending 
on the parity of the permutation. 

The error at any stage can be estimated from the 
quantity 

en=(\Hun\*/(un)Huny)-l, 

which is zero if un is an eigenvector of H. If en<e2, the 
error in X can be shown to be less than e2X2/1X—Xy| and 
the norm of the error in v is less than | eX/(\—Xy)|, 
where Xy is the eigenvalue which occurs closest to X (see 
the Appendix). It is seen that if two states are nearly 
degenerate the results may be seriously in error, but 
this is a characteristic of any method. 

The presence of a nearly degenerate state is serious 
in another way in that it causes the convergence to be 
very slow. After several iterations the principle error 
in \i is produced by V;+i, the next excited state. One 
has then un~Yi+eVi+h uw+i~Vi+pevi+i, where p 
= Xi+i/X;. If p is close to unity, the convergence is very 
slow. To avoid this difficulty, the correction uw+i—u» 
at each stage was increased by a factor (1—pa)~

l, where 
pa is an approximation to p given by en+i/en. I*1 ^ s 

way the rate of convergence was improved to the extent 
that only 17 iterations were required in a case in which 
p was 0.97. The method causes instability, however, so 
that the normal correction of un+i—un was used if 
en+i>en. It also appears to be necessary that all the 
eigenvalues be negative. To ensure this, an upper 
bound A on the largest eigenvalue was subtracted from 
the matrix. The bound used was 

A = max<[JSr«+ (E,^#*2)1 / 2] • 

Low-lying states of spin higher than those sought can 
decrease the rate of convergence or appear instead of 
the desired state if they are of lower energy. To avoid 
this difficulty these states were projected out initially 
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by multiplying u0 by 

L>J 

This is readily done since J2 can be expressed as a two-
particle operator. Another approach, which is probably 
preferable, is to compute the eigenvectors in order of 
decreasing / and use the lowering operator J~ to de­
crease Jz. The initial state Uo can then be chosen or­
thogonal to the eigenvectors of higher spin. 

The initial vector Uo was chosen to be the single con­
figuration for which (uo,#Uo) is minimum. Since the 
principal error in vr is vr+i, the difference un—uw_i at 
the last iteration is a good initial vector for the calcu­
lation of vr+i. 

III. RESULTS 

Since the nature of the internucleon force within the 
nucleus is rather uncertain the calculation was per­
formed for four different sets of force parameters. The 
four cases will be labeled A, B, C, and D. 

In case A the potential is of the Rosenfeld form : 

V(r) = V0(-0.13+0.93Pr+0A6P«~0.26PrP") 
Xe-na/(r/a), 

with Fo= - 4 5 MeV and a== 1.37 F. The single-particle 
energies for protons and neutrons were assumed to be 
the same and were taken from the data for O17: Ep(%) 

0 1 2 3 4 5 6 7 8 
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FIG. 1. Positive-parity energy levels of Ne20 computed in case A. 
The observed levels are shown by wavy lines. An asterisk indicates 
that the level is T = l . 
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FIG. 2. Positive-parity energy levels of Ne20 computed in case B. 

=En(f) = 0, £ p ( i ) = iSn(i) = 0.88 MeV, and Ep(l) 
= J5n(f) = 5.08 MeV. The resulting energy levels, rela­
tive to the ground state are shown in Fig. 1. The wavy 
lines show the experimental observations as tabulated 
by Pearson et al.,3 together with two further levels 
observed by Kuehner and Almqvist.4 The energy of the 
ground state is —22.5 MeV, corresponding to a binding 
energy relative to O16 of 32.0 MeV if it is assumed that 
the d5/2 protons and neutrons are bound to O16 with 
energies of 0.60 and 4.14 MeV, respectively. The range 
b of the harmonic-oscillator wave functions was assumed 
to be 1.64 F in each of cases A, B, and C. 

In case B the potential was taken to be 

with F 0 = - 4 5 MeV, a=1.37 F. This has the same 
radial dependence as the potential in case A, but the 
exchange mixture may be more realistic. The single-
particle energies were taken from O17 and F17; they are 
£*(f) = £n(f) = 0, £p(J) = 0.50, EB(£) = 0.88, JSP(§) 
= 5.82, £n(§) = 5.08. The Coulomb repulsion between 
protons was also included. The results are shown in 
Fig. 2. The energy of the ground state is —23.5 MeV, 
corresponding to a binding energy relative to O16 of 
33.0 MeV. 

Case C differs from B only in the values of a and VQ. 

3 J. D. Pearson, E. Almqvist, and J. A. Kuehner, Can. J. Phys, 
42, 489 (1964). 

4 J. A. Kuehner and E. Almqvist, Bull. Am. Phys. Soc. 9, 430 
(1964). 
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The range a was chosen to be 1.0 F and VQ was —84.5 
MeV; the value of Voa2 is the same as in case B. The 
results are shown in Fig. 3. The binding energy relative 
to O16 is in this case 32.6 MeV. 

The approach in case D was quite different from that 
in the other three. The nuclear internucleon potential 
enters the calculation via the moments denned by 

/ 7 T \ 1 / 2 r00 

Jn = ( - ] / (x?n(Tx*i2V(bx)3t?dx. 

In this case, the moments were chosen arbitrarily to 
be J0= -6 .91 , / x = -5.00, J2= -3.06, 73= -95.2, and 
/4=—3084 MeV. The exchange mixture and single-
particle energies of case B were again used. These 
values of Jn give, in the singlet even potential, the 
parameters deduced by Pandya5 in a study of the 
oxygen isotopes. The results are shown in Fig. 4. The 
binding energy relative to O16 is 38.4 MeV. 

It is observed that case B gives the best agreement 
with experimental observations, all of the levels except 
the first excited spin-zero level falling within 1 MeV of 
the observed levels. The ground-state energies in cases 
A, B, and C all agree well with the observed binding 
energy relative to O16 of 33.0 MeV. 

It should be remarked that the figures show all the 
levels which have been computed below 13 MeV. In 
some cases, particularly for / = 2 , there may be other 
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FIG. 3. Positive-parity energy levels of Ne20 computed in case C. 

5 S. P. Pandya, Nucl. Phys. 43, 636 (1963). 
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FIG. 4. Positive-parity energy levels of Ne20 computed in case D. 

levels above those computed but below 13 MeV. It is 
also observed that there are no states of J=l. These 
were not found because round-off error, or the inexact 
commutativity of J2 and H, caused convergence to the 
lowest J =2 state. It is estimated, however, that the 
lowest / = 1 state is at 13.4 MeV in case A and 14.5 
MeV in case B. 

The convergence criterion, e2, for calculating \n and 
vn was chosen to be 0.5X10~6X2n. From this we can 
say that the energies below 10 MeV should be accurate 
to about 0.1 MeV. Above 10 MeV the errors may be 
greater, particularly in the cases in which two levels are 
almost degenerate. We believe, however, that none of 
the levels should be in error by more than 0.5 MeV. 
On the other hand, the eigenvectors for these higher 
levels are probably seriously in error. 

While no use has been made in the calculation of the 
isotopic spin formalism, it is possible to assign an iso-
topic spin quantum number to the various states. The 
states computed are all of T=0 or L The states of 
T= 1 are marked in the figures with an asterisk. The 
excited state with J =2, T=l in case B agrees reason­
ably well with the value of 11.1 MeV obtained by 
averaging the ground-state energies of the analog 
nuclei F20 and Na20. 

The electric quadrupole transition moments have 
been computed for all pairs of states. Unfortunately, 
only the two E2 transitions for the first two excited 
levels are observed. The computed lifetimes of the 1.63-
and 2.62-MeV transitions are respectively 4.3 X10-11 
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TABLE II. Values of B(E2)/e2 for various pairs of states. The 
higher excited states of a particular spin are denoted by one or 
two asterisks. 

Pair of states B (E2)/e* (F4) 

0^2 L65 
0-2* 3.90 
0-2** 0.43 
2-2** 4.04 
2-4 1.75 

2*-4 2.42 
4-4* 5.13 
4-6 0.76 

and 3.7X 10~12 sec. These are greater than the observed 
values6 by a factor of about fifty indicating that the 
shell model does not adequately describe these prop­
erties. In Table II we list the values of B(E2)/e2 for 
certain transitions where 

B(E2)/e2=[ - ) , 
\ 2J+1 / L (JM 201 J2J'M)J 

and 
Qo2=Ziri2Y2to&><pd> 

the sum being over the two protons. 
The calculations were performed on an IBM 7040 

computer. The calculations for case A took approxi­
mately 5 h, and those of cases B, C, and D took about 
90 min apiece. When eigenvectors for one potential 
have been found, they can be used as a starting point 
for other calculations, thereby decreasing the time 
markedly. 

IV. CONCLUSIONS 

With two or three exceptions the positive-parity 
energy levels of Ne20 are described quite well by the 
shell model. One of the exceptions is the first excited 
J~0 state which is in error by about 2.5 MeV. One 
characteristic of this level has been noticed; it has a 
very large (0.67) amplitude for the (sy2)

4 state. The en­
ergy is therefore quite sensitive to the sy2 single-
particle energies and to one particular Slater integral. 
The other discrepancy is the presence of relatively low-
lying states of J=3 which are not observed. In fact, 
these results imply that the ground state of F20 should 
be of spin 3 rather than the observed spin 2. A much 
greater discrepancy exists in the electromagnetic-
transition moments. The shell model is apparently 
quite incapable of describing these properties. 

The method of calculation described may be quite 
useful in extending the shell model to problems of 
several particles. While we have described the method 

6 M. A. Clark, H. E. Gove, and A. E. Litherland, Can. J. Phys. 
39, 1241 (1961); D. K. Alkhazov, A. P. Grinberg, I. K. Lemberg, 
and V. V. Rozhdestvenksii, Zh. Eksperim. i Teor. Fiz. 36, 322 
(1959) [English transl: Soviet Phys.—JETP 9, 222 (1959)]. 

for the nuclear shell model, there is no reason why it 
should not be applicable to problems of atomic struc­
ture and it could conceivably be applied to simple axially 
symmetric problems of molecular structure. 

One disadvantage of the method is that the resulting 
eigenvectors are in a form which is quite uninstructive. 
It might be said, however, that if more than 100 con­
figurations are involved in a wave function, the ampli­
tude of a particular one may not be of great interest. 
We can say at least that configuration mixing seems to 
be very important. In case B the probability of finding 
the (̂ 5/2)4 state in the ground state is only 0.11, while 
the probability of finding the (si/2)4 state is 0.16. 
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APPENDIX 

The results of this Appendix should be standard. We 
have, however, been unable to find them in the nu­
merical analysis literature, so that they are included 
for completeness. 

If e<e2, we can write 

(Hu,Hu) - (u,#u)2< €2(u,#u)2, 

where u is an approximation to v, an exact eigenvector. 
If we write u= (1—| w|2)1/2v+w, where (v,w) = 0, w 
being the error in u, we obtain 

(i9ru,^u) = X2-X2 |w|2+|5 rw|2 , 

(u,Hu) = \-\\w\2+(w,Hw). 

If these are substituted into the inequality and only 
terms of lowest order in | w |2 retained the result is 

(Hw,Hw)-2\(w,Hw)+\2\w\2<e2\2, 

or \Hxv—Xw| < |eX|. If (u,Hu) is used to estimate X, 
it is seen that the magnitude of the error is 

|X|w|2-(w,#w)| 
= I (w, Xw-tfw) I < I w| |#w-Xw] < I eX| I w|. 

To estimate | w |, we expand w in eigenvectors of H. 
Then 

|#w-Xw|2=£(X*-X)2^2<e2X2 . 

If \i is the eigenvalue closest to X we can write 

(Xi-X)2Z^2<€2X2, 

or, since £ h2= |w|2, 

|w|<e|X/(X-X<)|. 


